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Abstract
We propose a systematic way of finding solutions to the classical Yang–Mills equation with
nontrivial topology. This approach is based on one of the Wightman axioms for quantum field
theory, which is referred to as the form invariance condition in this paper. For a given gauge
group and a spacetime with certain isometries, thanks to this axiom that imposes strong
constraints on the general ansatz, a systematic way of solving the Yang–Mills equation can be
obtained in both flat and curved spacetimes. In order to demonstrate this method, we recover
various known solutions as special cases, as well as producing new solutions not previously
reported in the literature.

Keywords: Yang–Mills theory, form invariance, curved space, exact solutions, Wu-Yang
monopole, instanton

1. Introduction

Up to now the most accurate law of elementary particle
physics is given by quantum gauge theories [1–3]. To fully
understand a quantum gauge theory, we need to study the
vacuum structure of the theory, and the first step is to find
exact solutions to the classical Yang–Mills equation. In
Euclidean flat spaces, many nontrivial solutions were found
[4–6], which later led to important progress in physics [7, 8]
and mathematics [9, 10]. Besides the solutions in flat space-
times, there are also nontrivial solutions found in curved
spacetimes [11–16].

Instead of searching for the solutions case by case, we
would like to develop a systematic way of finding exact solu-
tions with nontrivial topology. The key is to notice that all
classical solutions respect one of the Wightman axioms [17],
which will be referred to as the form invariance condition. The
new formalism can be summarized as a two-step approach:

(i) Obtain a general ansatz explicitly satisfying the form
invariance condition.

(ii) Insert this ansatz into the Yang–Mills equation.

After these two steps, the usually highly involved nonlinear
partial differential equation is greatly simplified, and for the
spherically symmetric case it even becomes an ordinary
differential equation. Applying this new approach, we have
recovered all the known spherically symmetric solutions in
Euclidean three and four dimensions [18]. We have also
discovered new solutions in Euclidean ten dimensions with the
gauge group SO(10). Since this approach relies only on the basic
symmetries and Wightman axioms of quantum field theory, it is
valid in more general cases other than just the flat spacetimes.
For curved spacetimes, all the known solutions in the literature
and some new solutions can be found using this approach.

In this paper, we demonstrate that this new approach can be
applied to Yang–Mills theories in both flat and curved space-
times, with a gauge group SU(2) or other groups with higher rank.
We considered the Euclidean signature for most cases, but a time-
dependent solution will be discussed in the Lorentzian dS4 space.

2. Form invariance condition

In attempting to define quantum field theory with solid
mathematical foundations, Wightman et al have established a
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set of axioms [17]. One of them for the vector field mj x( ) is as
follows:

L + =m
n

n m
- -A j Ax a U a A j x U a A, , , 11 1( ) ( ) ( ) ( ) ( ) ( )

where Lm
n is a representation of the Lorentz group, A is a

Lorentz transformation on the vector x, and U a L,( ) is a
unitary or anti-unitary operator on the Hilbert space. The
meaning of this condition is that a stable field configuration
should be physically invariant under the pair of Lorentz
transformations. In the conventional terminology, the condi-
tion (1) can be interpreted as that viewing a gauge field in a
specific frame is equivalent to choosing a gauge.

More specifically, for a field Vμ in the vector repre-
sentation of the Lorentz group, the axiom (1) becomes

=m
n

n m
-O V O x V x . 21( ) ( ) ( ) ( )

Of course, a generic vector field is not Lorentz invariant.
However, we emphasize that the left-hand side of this con-
dition consists of not just one Lorentz transformation, but a
pair of Lorentz transformations, one acting on the coordinates
x and the other acting on the vector field index ν, and these
two Lorentz transformations are inverse to each other. Hence,
after this pair of Lorentz transformations, a generic vector
field should be physically invariant.

A gauge field is a vector field with additional gauge
symmetry. Hence, the axiom (1) for a gauge field Aμ reads:

= + ¶m
n

n m m
- - -O A O x V A x V V V , 31 1 1( ) ( ) ( ) ( )

where m
nO denotes a Lorentz transformation, and V stands for a

gauge transformation. Again, the left-hand side of (3) consists
of a pair of Lorentz transformations that are inverse to each
other; hence, (3) should lead to a physically equivalent con-
figuration, i.e. a configuration that can be obtained through a
gauge transformation. As one of the Wightman axioms, the
condition (3) should be true for any classical gauge fields,
including both Abelian and non-Abelian ones. In fact, as we
will see, all the known 3D and 4D classical solutions with
nontrivial topology (e.g. the 4D Yang–Mills instanton) satisfy
the condition (3).

The condition (3) has been studied in [19], where it is
proven that for a Lorentz transformation with only rigid
parameters the condition (3) can be simplified to

=m
n

n m
- -O A O x V A x V , 41 1( ) ( ) ( ) ( )

which is referred to as the form invariance condition
throughout this paper.

The form invariance condition (3) or (4) is a necessary
condition for the classical solutions to field equations. How-
ever, it turns out that these conditions are not automatically
satisfied by an arbitrary field configuration; instead, they
impose strong constraints on field configurations. Notice that
a solution satisfying the field equation has to satisfy the
condition (3) or (4), but the reverse is not true. The reason is
simple: among all the configurations that are form invariant, a
solution is only the one that minimizes the action. In the case
of the non-Abelian gauge theory, the field equation is the
Yang–Mills equation, which is our focus in this paper. The

fact that a solution to the Yang–Mills equation also satisfies
the condition (3) or (4) has been shown and discussed in great
detail in [18], which will also be demonstrated in this paper
with many examples. Roughly speaking, for a given space we
can construct an ansatz which satisfies the condition (3) or
(4), however, the ansatz has to take a specific form in order to
become a solution. Hence, the equation of motion is more
restrictive than the conditions (3) and (4).

We emphasize that quantum fluctuations do not need to
satisfy the form invariance condition (3) or (4). Instead, the
form invariance condition is a necessary condition for the
classical solutions. For those configurations that satisfy the
condition (3) or (4) but are not classical solutions, they form a
new class of fluctuations, which distinguish from the standard
quantum fluctuations in the literature. More properties of this
new class of fluctuations are studied in [18]. In this paper we
only discuss how to use the condition (3) or (4) to system-
atically find solutions with nontrivial topology.

To find nontrivial solutions to the Yang–Mills equation,
our strategy is to first construct an ansatz obeying the con-
dition (3) or (4) and other symmetry principles. The obtained
ansatz does not yet solve the Yang–Mills equation, but will
greatly simplify the original one. We will focus on the con-
dition (4) in this paper.

3. General procedure

Let us first list the general procedure of our approach to
finding nontrivial solutions, and we then will demonstrate it
with several examples. The procedure reads:

1. Construct the general ansatz that is Lie algebra valued
and invariant under the pair of Lorentz transformations.

2. Impose the form invariance condition (4). This require-
ment will restrict the undetermined factors in the ansatz
constructed above.

3. Insert the ansatz satisfying the form invariance condi-
tion (4) into the Yang–Mills equation, which will
greatly simplify the original equation. In the presence of
some additional symmetries (e.g. spherical symmetry),
the Yang–Mills equation can even become a simple
ordinary differential equation.

4. (optional) Introduce a topological term in the action,
which does not affect the theory at quantum level but is
proportional to the winding number and makes the
nontrivial topology manifest. It also provides boundary
conditions for the solutions to the Yang–Mills equation.

5. Solve the simplified Yang–Mills equation under certain
boundary conditions, both of which are obtained before.
Even if in some cases it is difficult to find analytical
solutions, this well-defined differential equation system
will make it easier to systematically analyze the
nontrivial solutions to the Yang–Mills equation.
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4. Flat space with gauge group SU(2)

We first briefly review how the general formalism works for
the spherically symmetric solutions in the flat 3D and 4D
Euclidean spaces [18].

For the 3D case with a gauge group SU(2), the ansatz
reads

= ¶m m
-A p r U U , 51( )( ) ( )

where

º m mr x x , 6( )

and the index m Î 1, 2, 3{ } labels the spacetime coordinates.
U is an SU(2) group element. In general, U can be expressed
as

q w q= = m mU T x T n rexp exp , 7a
a

a
a[ ( )] [ ˆ ( )] ( )

where the index Îa 1, 2, 3{ } labels the generators of SU(2)
and ºm mn x rˆ . The tensor w m

a is an O(3) group element.
For the 4D Euclidean space with a gauge group SU(2),

the ansatz is

w q= ¶ =m m
-A p r x U U U T n r x, , exp , ,

8
a

a
i i4

1
4( )( ) [ ˆ ( )]

( )

where r is formally defined in the same way as the 3D case (6)
but with the index μ running from 1 to 4, and the index
Îa 1, 2, 3{ } still labels the generators of SU(2), while the

index Îi 1, 2, 3{ } stands for three out of four directions in
4D Euclidean space. For the gauge group SU(2), we choose
the anti-hermitian generators as

s
=T

2i
, 9a

a

( )

with the standard Pauli matrices sa and the imaginary unit i.
To simplify the ansatz, we impose the form invariance

condition (4). For the 3D case, by considering the spatial
rotations in 12 , 23( ) ( ) and 31( ) planes, we can show that the
tensor w m

a is constrained to be a constant O(3) group element
[18]. For simplicity, we choose it to be d m

a , then the ansatz
(5) automatically satisfies the condition(4), which implies
that for the 3D case there is no constraint on the factors p(r) or
q r( ). For the 4D case, however, due to the extra spatial
rotations in (14), (24) and (34) planes, it was proven in
AppendixE of [18] that the form invariance condition (4)
requires additionally =p r x p r, 4( ) ( ) and fixes the function
q r x, 4( ) to be

q
= 

x

r
cos

2
, 104 ( )

where the signs are related by a gauge transformation, and we
pick up the positive sign. Consequently, the 4D ansatz (8) can
be expressed as

h=m mn nA T
p r

r
x T2 , 11a a

a
a

2

( ) ( )

where h mna are the ’t Hooft symbols.
As we have shown here, the form invariance condition

strongly restricts the ansatz. Let us emphasize this point by
another example. For instance, one may write an expression

with two types of ’t Hooft symbols:

h h+mn n mn nC x T C x T C : constants , 12a
a

a
a

1 2 1,2¯ ( ) ( )

as an ansatz to the 4D Yang–Mills equation, but in general it
is only form invariant for the gauge group SO(4), but not for
SU(2). In order for the expression (12) with the gauge group
SU(2) to be form invariant, either C1 or C2 has to vanish.
Hence, the form invariance condition (4) imposes very strong
constraints on the ansatz in general.

5. Topological term and boundary condition

Inserting the 3D ansatz (5) back into the Yang–Mills equation,
we obtain the greatly simplified equation, which in this case is
just an ordinary differential equation. Before solving the sim-
plified Yang–Mills equation, it will be more convenient if we
introduce a topological term to fix the boundary conditions. The
3D topological term is the Chern-Simons term:

òp
p=  +   ºS

k
x A A A A A kB

i

4
d Tr d

2

3
2 i ,

13

CS
3

( )

⎜ ⎟⎛
⎝

⎞
⎠

where k is the Chern-Simons level, and B denotes the winding
number, both of which should be integers.

Substituting the 3D ansatz (5) into (13), it is easy to show
that the winding number B has contributions only from the
singular points of the integrand, which reads

ò
p

q q= å - -

´ ¶ ´ ¶

b b b b b

b

B p p

S n n n

3

2

2

3

1

2
sin2

d , 14

2
3 2

1 2ˆ · ( ˆ ˆ) ( )

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where β denotes the singular points, e.g. r=0 and = ¥r for
the simplest cases, which satisfy

òp
¶ ´ ¶ = S n n n

1

4
d 1, 151 2ˆ · ( ˆ ˆ) ( )

where the contributions from r=0 and = ¥r have the
opposite sign due to different boundary orientations.

By requiring that the Chern-Simons term provides us
with a well-defined winding number, we see that the values of
p(r) and θ(r) at the boundaries r=0 and ¥ are fixed to be

q p= == ¥ = ¥p
1

2
, . 16r r0, 0 0,∣ ∣ ( )

For the 4D case, we can introduce

òp
p= - ºmn mnS x F F B

i

8
d Tr 2 i , 174 *[ ( )] ( )

where B denotes the 4D winding number.
Applying the 4D ansatz (8) to (17), we obtain

= - - - -= =¥ B p p p p2 3 2 3 , 18r r
3 2

0
3 2( ) ∣ ( ) ∣ ( )

where

òp
= W

´ ¶ ¶ ¶ =

m mnrs

n r s

=
=
- - -



U U U U U U

1

24
d

Tr 1, 19

r
r

0 2 0
1 1 1

∣

[( )( )( )] ( )

3
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for the gauge group SU(2). Due to the opposite boundary
orientations, the contributions from r=0 and from = ¥r
have opposite signs.

By requiring a well-defined winding number, we find that
the values of p(r) at the boundaries r=0 and ¥ have to be

== ¥ p
1

2
. 20r 0, 0∣ ( )

Finally, we obtain the simplified Yang–Mills equation in
3D and 4D with the boundary conditions (16) and (20)
respectively. The solutions with the lowest winding numbers
are listed as follows. For the 3D case, we find

• Vacuum solution:

=mA 0. 21a, ( )

• Wu-Yang monopole:

= -m
m

A
x

r
. 22a

ai i
, 2

( )

• Pure gauge solution:

= -m
m

A
x

r
2 . 23a

ai i
, 2

( )

For the 4D case, we can recover all the known solutions in the
literature as follows:

• Vacuum solution:

=mA 0. 24a, ( )

• Meron solution:

h=m mn nA
r

x
1

. 25a a, 2
( )

• Instanton solution:

h=
+

m mn nA
r c

x
2

, 26a a, 2
( )

with a positive real constant c.
• Anti-instanton solution:

h=
+

m mn nA
c

r r c
x

2
, 27a a, 2 2( )

( )

with a positive real constant c.
• Pure gauge solution:

h=m mn nA
r

x
2

. 28a a, 2
( )

6. 3D curved space with gauge group SU(2)

Since the Yang–Mills equation is classically conformal
invariant, the solutions in conformally-flat curved spacetimes
can be easily derived by our approach in the same way as

their corresponding flat-space solutions. Here, we would like
to illustrate that our approach can be used in more general
cases.

Let us consider the classical solutions to the Yang–Mills
equation on the 3D curved space with spherical symmetry for
simplicity. Because it shares the same isometry with the 3D
flat space, they can be treated in a similar way. More expli-
citly, the 3D curved space is given by the metric:

= + Ws r f rd d d , 29
S

2 2 2
2( ) ( )

where Wd
S
2

2 denotes the line element on the 2-sphere S2,
which can be embedded into a 3D flat Euclidean space, and r
is the radial coordinate, which is related to the 3D flat
Euclidean space coordinates in the standard way:

º = + +r x x x x . 302 2
1
2

2
2

3
2∣ ∣ ( )

Hence, for this class of curved spaces there is an SO(3)
rotational isometry acting on the vector x x x, , T

1 2 3( ) .
Now consider the ansatz for the Yang–Mills field:

w q= ¶ =m m
-A p r U U U T

x

x
rwith exp .

31

a
a

i

i
1( )

∣ ∣
( )

( )

⎡
⎣⎢

⎤
⎦⎥

It is a generalization of the ansatz (5), and the only difference
is that (31) is written in terms of the flat space coordinates, in
which the S2 is embedded. Notice that (31) is a legitimate
ansatz for these curved spaces, because the spaces with the
metric (29) have the same isometry SO(3) as the flat space 3.
Hence, all the previous analyses for the flat 3 still hold for
the class of the curved spaces with the metric (29). In fact, the
flat space 3 is just a special case of the metric (29)
with =f r r2( ) .

The metric (29) can be written as

= + W

= + W

s
f r

r

r

f r
r r

f r

r
h r r r

d d d

d d , 32

S

S

2
2

2
2 2 2

2
2 2 2

2

2

( )
( )

( ) [ ( ) ] ( )

⎡
⎣⎢

⎤
⎦⎥

i.e. it is conformally equivalent to

= + Ws h r r rd d d . 33
S

2 2 2 2
2( ) ( )

We will focus on the metric (33) in the following, which
can be written as

d= +
-

mn mn m ng
h r

r
x x

1
, 34

2

( ) ( )

where we use pseudo-Cartesian coordinates—the indices of
the coordinates mx or xμ are raised and lowered by the Kro-
neckar delta, not by the metric itself. Notice that ºr x2 2∣ ∣
preserves an SO(3) rotational symmetry only when we treat
xμ and xμ on the equal footing. The inverse metric is

d= +
-mn mn m ng

h r

r h r
x x

1
, 35

2

( )
( )

( )

4
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and the Christoffel symbol is given by

G =
-

+
¢ - -m

nr nr
m m

n r
h r

r h r
g x

r h r r h r

r h r
x x x

1 2 1

2
.

36

2

2

5

( )
( )

( ) ( ( ) )
( )

( )

Because we are using the pseudo-Cartesian coordinates,
the ansatz mA a, satisfying the form invariance condition on
the curved space (33) is formally the same as the one in the
flat 3:

d
= - + -m

m m m
A G

r

x x

r
H

x

r
1 . 37a

a a ai
i

, 3 2
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

Consequently,

d d
=

-
¢ + + -

+
-

- + ¢ -

+ -

mn
m n n m mn

m n n m

mn



 



F
x x

r
rG

r
G H

x x x

r
H rH G

x x

r
H

2 2

2 2

1 . 38

a
a a a

i
ai ai

a
i

i

, 3 2
2

4
2

4
2

( )

( )
( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

When we raise the indices, the expression is given by

d d
=

-
¢ + + -

+
-

- + ¢ -

+ -

mn
m n n m mn

m n n m

mn



 



F
x x

r

r

h
G

r
G H

x x x

r
H

r

h
H G

x x

r
H

2 2

2 2

1 ,

39

a
a a a

i
ai ai

a
i

i

,
3 2

2

4
2

4
2

( )

( )

( )
( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where

¶
¶

=
¶
¶

=
¶
¶

=
¶
¶x

g
x g x h r r

1 1
, 40

r

rr
r

rr
r ( )

( )

with ºx rr .
Finally, we obtain m

mnD F a, on the curved space (33):

d

= ¶ + G

+ G +

= - + + + ¢

+ ¢ ¢ - ¢ - 

+ - -

- ¢ ¢ + 

+ - -

- ¢ ¢ + 

m
mn

m
mn m

mr
rn

n
mr

mr
m

mn

n

n

n





D F F F

F A F

x x

r h
Gh G h Gh H rhHG

r G h rhGH r hG

x

r h
h H G h H h H

r h H r hH

r h
Gh G h Gh H

r G h r hG

2

1

2
2

1

2

1

2
.

41

a a a

a abc
b c

a

ai
i

a

, , ,

,
,

5 2
2 3 2 2 2

2 2

4 2
2 2 2 2 3

2 2

3 2
2 3 2 2 2

2 2

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Hence, the Yang–Mills equation =m
mnD F 0a, on the curved

space (33) can be reduced to

- + + + ¢ + ¢ ¢

- ¢ -  =

Gh G h Gh H rhHG r G h

rhGH r hG

2
1

2
2 0, 42

2 3 2 2 2 2

2 ( )

- - - ¢ ¢ +  =h H G h H h H r h H r hH
1

2
0, 432 2 2 2 3 2 2 ( )

- - - ¢ ¢ +  =Gh G h Gh H r G h r hG
1

2
0. 442 3 2 2 2 2 2 ( )

Combining (42) and (44), we obtain a simple relation

¢ = ¢HG GH . 45( )
We distinguish four possibilities:

1. = ¹G cH G, 0 and ¹H 0;
2. ¹ =G H0, 0;
3. = ¹G H0, 0;
4. = =G H0, 0.

For the first case, all three equations (42)–(44) lead to the
same equation:

- + -
¢

¢ +  =H c H
r h

h
H

r

h
H1

2
0. 462 3

2

2

2
( ) ( )

Firstly, we notice that the solutions in flat 3 remain as
valid solutions:

• Vacuum solution:

= =  =mG H A0, 1 0. 47a, ( )

• Pure gauge solution:

= = -  = -m
m

G H A
x

r
0, 1 2 . 48a

ai i
, 2

( )

• Nontrivial solution:

= =  = -m
m

G H A
x

r
0, 0 . 49a

ai i
, 2

( )

Although it is not surprising that there are vacuum and pure
gauge solutions for any h(r), it is interesting that (49) is
always a solution, which corresponds to the Wu-Yang
monopole in flat 3D space. As we have shown, it does not
just solve the Yang–Mills equations on a specific curved
space but on all curved spaces in the class (33). To the best of
our knowledge, these are new solutions to the 3D Yang–Mills
equation on curved spaces, and have not been discussed in the
literature before.

Secondly, once we know the factor h(r) in the 3D metric
(33), we can solve the simplified differential equations
obtained from (42)–(44) to find more solutions to G and H
and consequently more nontrivial solutions to the original
Yang–Mills equation on the 3D curved spacetimes given by
the metric (33).
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7. 4D curved space with gauge group SU(2)

Similar to the 3D case, let us consider the classical solutions
to the Yang–Mills equation on the 4D curved space with
SO(4) rotational symmetry for simplicity. Because it shares
the same isometry with the 4D flat space, it can be treated in a
similar way. The 4D curved space is given by the metric:

= + Ws r f rd d d , 50
S

2 2 2
3( ) ( )

where Wd
S
2

3 denotes the line element on the 3-sphere S3,
which can be embedded into a 4D flat Euclidean space. r is
the radial coordinate, which is related to the 4D flat Euclidean
space coordinates in the standard way:

åº =
=

r x x . 51
i

i
2 2

1

4
2∣ ∣ ( )

Hence, for this class of curved spaces there is an SO(4)
rotational isometry acting on the vector x x x x, , , T

1 2 3 4( ) .
In the following, instead of the 4D metric (50) we con-

sider a conformally equivalent metric:

= + W = +
-

s h r r r x
h r

r
x xd d d d

1
d ,

52

S
2 2 2 2 2

2
2

3( ) ( ) ( · )

( )

  

i.e. in the pseudo-Cartesian coordinates

d= +
-

mn mn m ng
h r

r
x x

1
. 53

2

( ) ( )

Now for the 4D curved spaces with the metric (52), the
ansatz satisfying the form invariance condition (4) formally
remains the same as (8) in the flat 4 space. After taking into
account the result (10) in 4 derived from the form invariance
condition (4), we obtain:

h=m mn
nA

p r

r
x2 , 54a a, 2

( ) ( )

where h mna again denote the ’t Hooft symbols. Consequently,
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Moreover, the Christoffel symbols for the metric (52) for-
mally take the same expression as (36). Therefore,
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The Yang–Mills equation on the curved spaces (52) reduces
to

- + - - ¢ ¢ + ¢ +  =p p p
r

h
p h

r

h
p

r

h
p3 2

8 4 4
0. 572 3

2

2

2
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First of all, we can easily see that for any h(r) there are
always the following solutions:

• Vacuum solution:

=  =mp A0 0. 58a, ( )

• Pure gauge solution:

h=  =m mn
np A

r
x1

2
. 59a a, 2

( )

• Nontrival solution:

h=  =m mn
np A

r
x

1

2

1
. 60a a, 2

( )

Similar to the 3D case, besides the vacuum solution and pure
gauge solution, there is always a nontrivial solution with
p=1/2. For the flat 4D space, it corresponds to the meron
solution, but as we have shown here, this solution exists not
just on a specific space but on all 4D curved spaces in the
class (52). To the best of our knowledge, these are new
solutions to the 4D Yang–Mills equation on curved spaces
and have not been discussed in the literature before.

Once we know the factor h(r) in the metric (52), by
solving the differential equation (57) we can find more
solutions to p and consequently more nontrivial solutions to
the original Yang–Mills equation on the 4D curved space-
times with the metric (52).

Let us discuss a few examples.

(1) Closed Friedmann universe:
this was firstly studied in [11]. The metric reads

c c= - Ws R ad d d , 612 2 2 2
3
2( )( ) ( )

which is conformal to the Einstein static universe. The
Euclidean version of this spacetime has the metric

= + Ws r ad d d , 622 2 2
3
2 ( )

which is conformal to

= + Ws
r

a
r rd d d , 632

2

2
2 2

3
2 ( )

and it is a special case of (50) with f (r)=a or (52) with
=h r r a2 2( ) . Using the ansatz (54) we reproduce the

instanton and the anti-instanton solutions found in [11]
in the gauge Ar=0:

=
+

p r
r r

1

1 exp
. 64

a

2
0

( )
( )

( )⎡⎣ ⎤⎦
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(2) Euclidean AdS4:
this case was discussed in [12]. We choose the

metric for the Euclidean AdS space to be

x x= + Ws ad d sinh d , 652 2 2 2
3
2( ) ( )

which is a special case of (50) with x x=f a sinh( ) .
Defining xºr a sinh , we can rewrite the metric (65)
into the form of (52):

=
+

+ Ws
r

rd
d

1
d , 66

r
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2
2

2
3
2

2

2

( )

i.e. = + -h r r a1 2 2 1( ) ( ) in this case. Using the Ansatz
(54) we reproduce the following nontrivial solution to
Yang–Mills equation found in [12] with the gauge
Ar= 0:

l
=

+ + +
p r

r

r a r a
, 67

2

2 2 2 2 2
( )

( )
( )

where λ is a free constant. This solution can be
interpreted as the instanton solution on AdS4, and it can
be generalized to certain modified AdS spaces [13].

(3) Lorentzian dS4:
this case was considered recently in [14–16]. The

metric for the Lorentzian dS4 space is given by

h h= - + Ws ad d cosh d , 682 2 2 2
3
2( ) ( )

which is different from the class (50), because it has the
Lorentzian signature. In order to apply the techniques
discussed above to this case, we first perform a Wick
rotation h hº iE and obtain

h h= + Ws ad d cos d . 69E E
2 2 2 2

3
2( ) ( )

Defining hºr a cos E, we can rewrite the metric (69)
into the form of (52):

=
-

+ Ws
r
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1
d , 70
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i.e. = - -h r r a1 2 2 1( ) ( ) in this case. Using the ansatz
(54) we reproduce the following nontrivial solution to
the Yang–Mills equation:

l
=

+ + -
p r

r

r a a r
, 71

2

2 2 2 2 2
( )

( )
( )

where Îr a0,[ ] in order for the solution to be real-
valued.

There is an alternative way of finding solutions to
the Yang–Mills equation on the Lorentzian dS4 (68).
Since the spatial part S3 has an @ ´SO SU4 2( ) ( )
SU 2( ) isometry, we can identify one SU(2) from the
isometry group with the SU(2) from the gauge group.

Using the special property of S3 (see appendix B of
[20]), we can construct an ansatz obeying the form
invariance condition (4) as follows:

= ¶ =

=
m

m
m

m
m

m-A x p t U U x p t e T x

p t T e

d d 2 d

2 , 72

a a

a a

1( )( ) ( )( )
( ) ( )

where the generators Ta are given by (9), and e a denote
the vielbeins on S3. Using this ansatz, we reproduce the
nontrivial solution to the Yang–Mills equation found in
[14]:

= + -p t t t
1

2
1 2 sech 2 , 730( ) [ ( ( )] ( )

where t0 is a constant.

8. Flat space with other gauge groups

Besides the flat space and the curved space with the gauge
group SU(2), we can also consider the flat space with higher-
rank gauge groups. For simplicity, let us focus on the N-
dimensional Euclidean space with the gauge group SO(N).
For this case, since both the gauge group and the Lorentz
group are SO(N), we can write down the ansätze similar to (5)
and (8). However, to simplify the discussion, an alternative
ansatz is more convenient to use in this case:

=m mn nA q r M x , 74( ) ( )

where r is formally defined in the same way as the flat 3D
case (6) but with the index μ running from 1 to N, and mnM are
the generators of SO(N). We can prove that this ansatz obeys
the form invariance condition (4) (see appendix E.3 of [18]).
In some dimensions N, there can be more general ansätze with
other tensor structure satisfying the form invariance condi-
tion, e.g. mnrs

nr sq r M x( ) [21], but the ansatz (74) always
provides a subsector of solutions to the Yang–Mills equation.
For this subsector, the solutions have the moduli from the
size, from the Lorentz translations and from the gauge
orientations, similar to the moduli corresponding to bosonic
zero modes for the 4D SU(2) instantons [22]. Hence, this sub-
moduli space for the N-dimensional SO(N) Yang–Mills the-
ory has the dimension

+ + - =
+ +

N N N
N N

1
1

2
1

2

2
. 75

2
( ) ( )

Inserting the ansatz (74) into the Yang–Mills equation,
we obtain the simplified Yang–Mills equation as follows:

+
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We can consider the simplest 2D case. Since it corre-
sponds to an Abelian gauge theory with the gauge group
U(1), (76) has a simpler form

+ =r
r r

q r

r r

q r

r

d

d

1 d

d

4 d

d
0, 77

( ) ( ) ( )⎜ ⎟⎛
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which has the solution

= +q r
c

r
c 781

2 2( ) ( )

with constants c1 and c2.
As we would expect, for all Î N 3, there are always at

least three solutions:

= - -q r
r r

0,
1

,
2

, 79
2 2

( ) ( )

which for N=3 correspond to the vacuum solution, the Wu-
Yang monopole and the pure gauge solution respectively.

For N=4, we find the following exact solutions with
nontrivial topology [21]:

=
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q r
r

2

2
, 80

2
( ) ( )
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4

2
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2 2
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Following the general discussion (75), this class of solutions
has the sub-moduli space of dimension 11.

For N=10, we discover new exact solutions with non-
trivial topology:

=
-

q r
r

1

1
, 82

2
( ) ( )

= -
+
+

q r
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r cr
c

2

1
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2

2 2
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( )
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Although these solutions to the 10D Yang–Mills equation are
not the most general ones, to the best of our knowledge, they
are new solutions and have not been discussed in the literature
before. Following the general discussion (75), this class of
solutions has the sub-moduli space of dimension 56.

Besides the dimensions discussed above, we found many
other numerical solutions, yet their closed forms have not
been established. To understand this fact and reveal more
hidden mathematical structures of the solutions, further stu-
dies are needed.

9. More general cases

From the discussions above, we demonstrate how our simple
formalism could help us find exact solutions to the Yang–
Mills equation in various examples. It is not hard to gen-
eralize it to more general cases.

So far we have only discussed spherically symmetric
solutions, for both flat spaces and curved isotropic spaces. We
consider these isotropic curved spaces, because they share the
same symmetry with the corresponding flat spaces and can be
treated in the same way, but the form invariance principle can
be applied to less symmetric curved spaces. To go beyond the

spherically symmetric case, we can glue multiple spherically
symmetric solutions together to construct an approximate
solution if the single-center solutions are put far away from
each other. For the true exact multi-center solutions, we
should generalize the exact multi-instanton solution [6] to
curved spacetime, which breaks the spherical symmetry to
cylindrical symmetry. This work will be presented in [23].

To apply the new formalism on more general spacetimes
and gauge groups, we should first analyze the isometry group
of the spacetime and compare it with the gauge group. Gen-
erally speaking, for a curved spacetime with an isometry
group H and for a gauge group G, we should find their
subgroups ¢ ÌH H and ¢ ÌG G, such that ¢ @ ¢H G . Since
the rotation of the spacetime generated by ¢H is isomorphic to
the rotation of the gauge group space generated by ¢G , we can
construct an ansatz similar to the flat cases (5) and (8) with
respect to the form invariance condition (4). After that, we
follow subsequent steps as described in general procedure.
Due to the multiple choices of subgroups, interesting sub-
classes of solutions could be found.

For spacetimes without enough isometry, a similar
formalism could be applied yet a more general form invar-
iance condition(3) with local Lorentz transformations is
needed.

10. Discussions

A systematic way of finding exact solutions to the classical
Yang–Mills equation has been proposed. It is based on one of
the Wightman axioms for quantum field theory, which is
referred to as the form invariance condition in this paper.
Within this framework, all the previous known solutions in
the literature are reproduced and new solutions are found. As
the first one in a series of papers, we only focus on the
simplest cases with spherical symmetry in this paper, and the
cases with less symmetries will be discussed in other papers
that will appear soon. Moreover, we choose the curved spaces
to be isotropic and have the same isometry group as the
corresponding flat spaces to show that the spaces with the
same symmetry allow the same treatments, because they obey
the same form invariance condition; whether they are flat or
curved is not crucial.

For future research, we would like to classify all the
solutions and study their moduli spaces. In particular, for the
solutions with nontrivial topology that we found in this paper,
we should be able to obtain complex saddle points discussed
in [24]. We may also apply the approach discussed in this
paper to Yang–Mills equations with a source, e.g. a point
particle carrying non-Abelian charge [25, 26] or a non-Abe-
lian current [27]. The implications in (A)dS/CFT corre-
spondence [28, 29] from the nontrivial solutions on (A)dS
spaces should also be explored in detail. According to the
recent progress on the so-called double copy [30–34], we
anticipate some nontrivial solutions in gravity corresponding
to the solutions to the Yang–Mills equation discussed in this
paper. We can also generalize the formalism to the Yang–
Mills theory coupled to scalars and try to reproduce the
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various nontrivial soliton solutions discussed in the litera-
ture [35].
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